Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Identification and Robust Control of LPG Fuel Supply System

2009-04-20
2009-01-1025
This paper proposes a new returnless LPG fuel supply system designed to increase the efficiency of current LPG engines. With a conventional engine fuel supply system, the fuel pump is driven at a certain speed to pressurize the fuel to an excessive level, and excess fuel that is discharged from the fuel pump but not injected from the injector is returned to the fuel tank via a pressure regulator and a return line. This arrangement keeps the pressure in the fuel supply line at a constant level. Accordingly, during engine idling, fuel cut-off or other times when very little or no fuel is injected from the injector, nearly all the fuel discharged from the fuel pump is returned to the fuel tank via the pressure regulator and return line. Therefore, the energy (electric power) applied to drive the fuel pump is wastefully consumed. Moreover, returning a large amount of excess fuel to the fuel tank can raise the fuel temperature in the tank, causing the fuel to evaporate.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Multiple-Event Fuel Injection Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0925
The objective of this research is a detailed investigation of multiple injections in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the performance and emissions benefits of multiple injections via experiments and simulations in a 0.48L signal cylinder light-duty engine operating at 2000 r/min and 5.5 bar IMEP. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2]. This study examines the effects of fuel split distribution, injection event timing, rail pressure, and boost pressure which are each explored within a defined operation range in LTC.
Journal Article

Detailed Unburned Hydrocarbon Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0928
The objective of this research is a detailed investigation of unburned hydrocarbon (UHC) in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the mechanisms that control the formation of UHC via experiments and simulations in a 0.48L signal-cylinder light duty engine operating at 2000 r/min and 5.5 bar IMEP with multiple injections. A multi-gas FTIR along with other gas and smoke emissions instruments are used to measure exhaust UHC species and other emissions. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, analysis of spray trajectory with a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2].
Journal Article

Determination of PEMS Measurement Allowances for Gaseous Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program Part 2 - Statistical Modeling and Simulation Approach

2009-04-20
2009-01-0939
Beginning in 2007, heavy-duty engine manufacturers in the U.S. have been responsible for verifying the compliance of in-use vehicles with Not-to-Exceed (NTE) standards under the Heavy-Duty In-Use Testing Program (HDIUT). This in-use testing is conducted using Portable Emission Measurement Systems (PEMS) which are installed on the vehicles to measure emissions during field operation. A key component of the HDIUT program is the generation of measurement allowances which account for the relative accuracy of PEMS as compared to conventional laboratory-based measurement techniques. A program to determine these measurement allowances for gaseous emissions was jointly funded by the U.S. Environmental Protection Agency (EPA), the California Air Resources Board (CARB), and various member companies of the Engine Manufacturer's Association (EMA). The gaseous pollutants examined in the program were carbon monoxide (CO), non-methane hydrocarbons (NMHC), and oxides of nitrogen (NOx).
Journal Article

Determination of PEMS Measurement Allowances for Gaseous Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program: Part 1 – Project Overview and PEMS Evaluation Procedures

2009-04-20
2009-01-0940
Under the U.S. Environmental Protection Agency's (EPA's) Heavy-Duty In-Use Testing (HDIUT) program, emission of non-methane hydrocarbons (NMHC), carbon monoxide (CO), and oxides of nitrogen (NOx) have been regulated using Portable Emissions Measurement Systems (PEMS) during in-use field operation for heavy-duty on-highway diesel engines with 2007 or later model year designations. As directed by the EPA, the Engine Manufacturers Association (EMA), and the California Air Resources Board (CARB), additive emission measurement accuracy margins (measurement allowances) were experimentally determined for HDIUT to account for the measurement differences between laboratory testing with laboratory grade equipment and in-use testing with PEMS. As part of a three-paper series, this paper summarizes the HDIUT measurement allowance program while focusing on the laboratory evaluations of the Sensors Inc. SEMTECH-DS PEMS.
Journal Article

Effect of Ignition Delay on In-Cylinder Soot Characteristics of a Heavy Duty Diesel Engine Operating at Low Temperature Conditions

2009-04-20
2009-01-0946
Low temperature combustion (LTC) strategies, which can mitigate emissions of particulate matter (PM) and nitrogen oxides (NOx) from diesel engines, typically have longer ignition delays compared to conventional diesel operation. With extended ignition delays, more time is available for premixing, which reduces PM formation. The effect of varying ignition delay on the spatial and temporal evolution of soot in LTC diesel jets is studied by imaging the natural soot luminosity, while the in-cylinder soot mass and temperature are measured using two-color soot thermometry. Ignition delay in the engine is controlled by adjusting the intake air temperature while keeping the same charge density at TDC. This allowed us to study sooting characteristics at various ignition delays while keeping the same diesel jet penetration for all the cases.
Journal Article

Active Heat Sink for Automotive Electronics

2009-04-20
2009-01-0965
This paper reports an active heat sink (AHS) that allows high-density electronic components to operate at a stable temperature over a broad range of ambient conditions. AHS receives heat at high flux and transfers it at reduced flux to environment, coolant fluid (e.g., air or engine coolant), or structures. Temperature of the heat load can be controlled electronically. Target applications for AHS include thermal management of the new class of high-power electronics being developed for electric hybrid vehicles. AHS also enables precise control over junction temperature (and, thus, light color) of high-power light-emitting diodes (LED) used for solid-state headlights and allows for compact air-cooled heat sinks. Depending on the configuration, AHS thermal resistance can be as low as 0.1 degC/W. AHS physics, engineering design, and performance simulations are presented.
Journal Article

Spray Pattern Optimization for the Duratec 3.5L EcoBoost Engine

2009-06-15
2009-01-1916
A systematic methodology has been employed to develop the Duratec 3.5L EcoBoost combustion system, with focus on the optimization of the combustion system including injector spray pattern, intake port design, piston geometry, cylinder head geometry. The development methodology was led by CFD (Computational Fluid Dynamics) modeling together with a testing program that uses optical, single-cylinder, and multi-cylinder engines. The current study shows the effect of several spray patterns on air-fuel mixing, in-cylinder flow development, surface wetting, and turbulence intensity. A few sets of injector spray patterns are studied; some that have a wide total cone angle, some that have a narrow cone angle and a couple of optimized injector spray patterns. The effect of the spray pattern at part load, full load and cold start operation was investigated and the methodology for choosing an optimized injector is presented.
Journal Article

Soot Emission Measurements and Validation of a Mean Value Soot Model for Common-Rail Diesel Engines during Transient Operation

2009-06-15
2009-01-1904
Measurements of the soot emissions and engine operating parameters from a diesel engine during transient operation were used to investigate the influence of transient operation on the soot emissions, as well as to validate a realtime mean value soot model (MVSM, [1]) for transient operation. To maximize the temporal resolution of the soot emission and engine parameter measurements (in particular EGR), fast instruments were used and their dynamic responses characterized and corrected. During tip-in transients, an increase in the soot emissions was observed due to a short term oxygen deficit compared to steady-state operation. No significant difference was seen between steady-state and transient operation for acceleration transients. When the MVSM was provided with inputs of sufficient temporal resolution, it was capable of reproducing the qualitative and, in part, quantitative soot emission trends.
Journal Article

Ethyl Tertiary Butyl Ether - A Review of the Technical Literature

2009-06-15
2009-01-1951
Ethyl tertiary butyl ether (ETBE) has been used as a high octane blending component since the early 1990's. However the strong interest in renewable energy has led to a dramatic increase in its use. This has also resulted in a substantial number of technical studies being carried out around the world to assess its performance with respect to vehicle performance, distribution system compatibility, environmental impact and toxicology. The purpose of this paper is to provide a comprehensive, up to date review of these data. Particular focus will be given to its positive impact on CO2 emissions.
Journal Article

Advanced Injection Strategies for Controlling Low-Temperature Diesel Combustion and Emissions

2009-06-15
2009-01-1962
The simultaneous reduction of engine-out nitrogen oxide (NOx) and particulate emissions via low-temperature combustion (LTC) strategies for compression-ignition engines is generally achieved via the use of high levels of exhaust gas recirculation (EGR). High EGR rates not only result in a drastic reduction of combustion temperatures to mitigate thermal NOx formation but also increases the level of pre-mixing thereby limiting particulate (soot) formation. However, highly pre-mixed combustion strategies such as LTC are usually limited at higher loads by excessively high heat release rates leading to unacceptable levels of combustion noise and particulate emissions. Further increasing the level of charge dilution (via EGR) can help to reduce combustion noise but maximum EGR rates are ultimately restricted by turbocharger and EGR path technologies.
Journal Article

Investigation on the Effect of Very High Fuel Injection Pressure on Soot-NOx Emissions at High Load in a Passenger Car Diesel Engine

2009-06-15
2009-01-1930
Previous research has shown that elevating fuel injection pressure results in better air-fuel mixture formation, allowing for a further increase in maximum exhaust gas recirculation (EGR) rate while consequently reducing NOx emissions. The aim of this paper is to find out whether there is an optimum injection pressure for lowest soot-NOx emissions at a given boost pressure in high-speed diesel engines. Experiments are carried out on a single-cylinder research engine with a prototype common-rail system, capable of more than 200 MPa injection pressure. The effect of injection pressure on soot-NOx formation is investigated for a variety of boost conditions, representing the conditions of single to multi-stage turbocharger systems. Analysis of the data is performed at the application relevant soot to NOx ratio of approximately 1:10. It is observed that above a critical injection pressure, soot-NOx emissions are not reduced any further.
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Journal Article

Herschel Heaters Control Modeling and Correlation

2009-07-12
2009-01-2348
Herschel and Planck satellites have recently undergone the thermal vacuum and thermal balance (TVTB) test which was performed in the ESA-ESTEC Large Space Simulator for Herschel and in Centre Spatial de Liège (CSL) for Planck. One of the specific targets of the Herschel test was the verification of the thermal stability of two HIFI units (required to be better than 3.10−4 °C/s) and of the Star Tracker mounting plate (required to be better than 2.5.10−3 °C/s), with particular attention on the performance of the relevant feedback control loops. Control system design and model predictions are presented and compared against the test results. Further discussion on the requirement verification is provided.
Journal Article

Comparative Configurations for Lunar Lander Habitation Volumes: 2005-2008

2009-07-12
2009-01-2366
This paper presents an overview of the progression of the contemplated candidate volumes for the Lunar Lander since the beginning of the Vision for Space Exploration in 2004. These sets of data encompass the 2005 Exploration Systems Architecture Study (ESAS), the 2006 Request for Information on the Constellation Lunar Lander, the 2007 Lander Design Analysis Cycle −1 (LDAC-1) and the 2008 Lunar Lander Development Study (LLDS). This data derives from Northrop Grumman Corporation analyses and design research. A key focus of this investigation is how well the lunar lander supports crew productivity.
Journal Article

Estimation of Mass and Inertia Properties of Human Body Segments for Physics-based Human Modeling and Simulation Applications

2009-06-09
2009-01-2301
This paper describes an effective integrated method for estimation of subject-specific mass, inertia tensor, and center of mass of individual body segments of a digital avatar for use with physics-based digital human modeling simulation environment. One of the main goals of digital human modeling and simulation environments is that a user should be able to change the avatar (from male to female to a child) at any given time. The user should also be able to change the various link dimensions, like lengths of upper and lower arms, lengths of upper and lower legs, etc. These customizations in digital avatar's geometry change the kinematic and dynamic properties of various segments of its body. Hence, the mass and center of mass/inertia data of the segments must be updated before simulating physics-based realistic motions. Most of the current methods use mass and inertia properties calculated from a set of regression equations based on average of some population.
Journal Article

Disturbance of Electronics in Low-Earth Orbits by High Energy Electron Plasmas

2009-07-12
2009-01-2339
Electrical disturbances caused by charging of cables in spacecraft can impair electrical systems for long periods of time. The charging originates primarily from electrons trapped in the radiation belts of the earth. The model Space Electrons Electromagnetic Effects (SEEE) is applied in computing the transient charge and electric fields in cables on spacecraft at low to middle earth altitudes. The analysis indicated that fields exceeding dielectric breakdown strengths of common dielectric materials are possible in intense magnetic storms for systems with inadequate shielding. SEEE also computes the minimal shielding needed to keep the electric fields below that for dielectric breakdown.
Journal Article

Using Designing for Human Variability to optimize Aircraft eat Layout

2009-06-09
2009-01-2310
Integrating the seemingly divergent objectives of aircraft seat configuration is a difficult task. Aircraft manufacturers look to design seats to maximize customer satisfaction and in-flight safety, but these objectives can conflict with the profit motive of airline companies. In order to boost revenue by increasing the number of passengers per aircraft, airline companies may increase seat height and decrease seat pitch. This results in disaccommodation of a greater percentage of the passenger population and is a reason for rising customer dissatisfaction. This paper describes an effort to bridge this gap by incorporating digital human models, layout optimization, and a profit-maximizing constraint into the aircraft seat design problem. A simplified aircraft seat design experiment is conceptualized and its results are extrapolated to an airline passenger population.
X